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Abstract

Aiming at the simulation of dense granular flows, we propose and test a numerical
method based on successive convex complementarity problems. This approach origi-
nates from a multibody description of the granular flow: all the particles are simulated
as rigid bodies with arbitrary shapes and frictional contacts. Unlike the discrete ele-
ment method (DEM), the proposed approach does not require small integration time
steps typical of stiff particle interaction; this fact, together with the development of
optimized algorithms that can run also on parallel computing architectures, allows an
efficient application of the proposed methodology to granular flows with a large number
of particles. We present an application to the analysis of the refueling flow in pebble-bed
nuclear reactors. Extensive validation of our method against both DEM and physical
experiments results indicates that essential collective characteristics of dense granular
flow are accurately predicted.

1 Introduction

During the last decade, research on the dynamical behavior of granular matter has attracted
significant attention from the scientific community. Simulations of granular dynamics can
be particularly useful in many fields of engineering, such as mining, mineral processing,
pharmaceuticals, oil and gas extraction, rock soil dynamics, agriculture, and food handling.
Many devices that deal with crushing, transporting, or mixing particles are still difficult or
impossible to simulate because of the large number of moving parts.
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On the scale of individual grains, granular materials follow the laws of classical mechanics:
particles are subject to many complex collisions and contacts. On mesoscopic and macro-
scopic scales, however, their behaviour is different from classical phases such as fluids, solids,
or gases [1]. The discontinuities that can affect granular materials on a microscopic level
introduce a level of complexity that is not met in the simulation of other porous media such
as foams, catalysts, or sponges, which do not feature grain-level diffusion and mixing [2].

For instance, size segregation devices, shakers, and rotating drums for the pharmaceuti-
cal industry exhibit pattern formation phenomena such as segregation and stratification of
species that can be observed at a mesoscopic scale. On macroscopic scales other complex
nonlinear phenomena exist whose numerical simulation is still challenging, such as in flows of
silos and hoppers, in landslides and avalanches, and in ground compaction under the pressure
of vehicle tires.

To simplify the problem, many researchers attempted to derive continuum models for
dense granular flows. These approaches can be helpful in describing the average behavior of
granular materials, but a general theory is still lacking [3] [4].

On the other side are brute-force approaches that are biased toward the microscopic
description of the material, favoring a realism over the cost of an increased computational
burden. Among these approaches the most used is the discrete element method (DEM) of
Cundall and Strack [5], where the granular medium is considered as collection of interacting
discrete objects; each object moves in response to the total force that results from body forces,
such as gravity and inertia, and repulsive forces caused by contacts with other particles [6].
In most DEM embodiments, the critical part is the description of the contact forces: the
Hertz contact theory for contacting spheres can be used to introduce spring-dashpot forces
between the objects in contact, and additional force fields can be used to represent the
friction forces. In many scenarios, however, the particles feature high stiffness, thus leading
to differential problems that require extremely small time steps in order to avoid divergence
during time integration [7]. Faster simulations could be achieved at a cost of using less stiff
values, but this heuristic shortcut leaves the difficulty of tuning proper values for the contact
coefficients [8].

In this paper we propose a multibody method that can simulate a very large number of
objects; but, unlike the DEM approach, our method enforces contacts with complementarity
constraints, leading to a differential variational inequality (DVI) problem [9]. Although the
mathematical formulation of DVIs is more complex than that of the ordinary differential
equations (ODEs) embedded in DEM methods, the DVI has the remarkable advantage of
allowing the use of larger time steps because contacts are enforced geometrically. Moreover,
knowledge of real or heuristic stiffness of the particles is not required, since the bodies can
be considered rigid [10] [11] [12].

We solve the original DVI by using a time-stepping scheme. The difficult part is, at each
time step, the solution of a nonlinear complementarity problem (NCP) resulting from the
optimality conditions of an optimization problem that, given the Coulomb friction model,
poses complex nonlinear constraints on contact forces. Previous researches in this area tended
to adapt solvers for linear complementarity problems (LCPs), at the cost of approximating
the Coulomb friction cones with faceted pyramids. Moreover, most available LCP solvers
are of direct type and cannot solve problems with many unknowns [13] [14].

Instead, we recently developed an iterative matrixless method that can solve the NCP, in
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form of a cone complementarity problem (CCP), with millions of unknowns and with mod-
erate computational efforts [15, 16]. Like other iterative complementarity solvers, [17], our
method requires the repetition of a contraction mapping that is stopped once the convergence
is reached within a reasonable accuracy.

We successfully used our approach to simulate systems of bodies with half a million of
contacts, thus suggesting its adoption in the simulation of granular flows where thousands
or millions of rigid particles with arbitrary shapes move with frictional contacts.

Since the stiffness from the spring and dashpot is absent, our method can take much
larger time steps. On the other hand, the CCP problem is clearly more complex than the
very few force evaluation that are needed by one time step of the DEM method. Therefore
the computational benefit from our method is a function of how fast we can solve the CCP.

For small problems the faster time-to-solution of CCP methods was clearly demonstrated
[8]. Our estimates of the CCP timing for the pebble bed simulation result in a factor of 300
speedup compared to results reported with DEM [7]. In addition the reference [7] mentions
the fact that computational considerations have required taking the spring constant a factor
of 105 smaller than supported by Hertzian contact theory. Nevertheless, such comparisons
are not yet strong indicators, since the results are run on different architectures, different
processors, and quite clearly with different tolerances.

Assessing the relative behavior of DEM and CCP in terms of time-to-solution for given
tolerance of the solution methods on the same architecture is an important endeavor with a
high development cost. To decide if that path is worth pursuing we first settle on a question
that we believe it is of a more immediate importance: are CCP methods able to predict the
behavior of dense granular flow at all? While theoretical analysis does demonstrate weak
convergence to a solution [18], there is the nontrivial risk that the convergence concept is too
weak (since non-uniqueness of solutions may occur, as rigid body frictional configurations
often exhibit [19]) or that the time steps we take are too large for the regimes we are trying
to simulate. In particular, it should be pointed out that the algorithm in [18] forces in some
sense all collisions to occur at the end of the time step which is the main reason why it can
proceed with fixed time step without the need of stopping at collisions and why the effort
per time step is predictable. While it has been proven that the resulting algorithm is stable
[18, 20], there is the conceptual risk that the convenient time step is too large for accurate
prediction of the granular material behavior.

We therefore turn our sights to validation, that is, assessing whether CCP methods
produce good agreement with the experiment and DEM method in terms of the macroscopic
behavior of dense granular flow. We choose macroscopic behavior metrics – such as aggregate
volume fraction or mean velocity – since the behavior of individual particles in vertical
granular channels is known to be chaotic [21] and thus agreement among the various methods
in particle-by-particle prediction is unlikely to occur.

To validate the approach, in this paper we compare our results to data from experiments
and from other authors [2] [22]. We also discuss the application of our method to a study of
the fuel flow in a fourth-generation pebble-bed nuclear reactor (PBR). Our CCP approach
compares favourably to the DEM method in terms of increased computational efficiency [7].
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2 The Pebble-Bed Reactor

The Pebble-Bed nuclear reactor is one of the most promising designs of the fourth genera-
tion reactors [23]. It is a high-temperature reactor, with an output temperature exceeding
1000 ◦C, which makes it highly suitable for a hydrogen economy. In addition, it can run
continuously for years, without needing to be stopped for refueling, which is the case in
the currently used light water reactors. By continuously recirculating the fuel through the
reactor core (Figure 1), the PBR dramatically reduces operation costs [24].

The fuel is encased in tennis-ball-size graphite spheres, each filled with TRISO nuclear
fuel (tristructural-isotropic particles of coated UO2, with sub-millimeter diameter). The ≈
400,000 pebbles are continuously recirculated or refreshed at a rate of about 2 per minute
[22]. They are densely packed, at volume fractions approaching 0.6, and thus constitute a
dense granular flow [25]. The center pebbles are moderator pebbles with comparable weight
to the fuel pebbles, even if they do not contain UO2. The reactor is cooled with a fast helium
flow that is blown top-down, which has negligible drag effects on the spheres when compared
to gravitational forces [25]. Because of its use of graphite, the reactor is passively safe, being
far from meltdown even in the case of total loss of coolant [25].

Predicting the distribution of the fuel pebbles in the pebble-bed reactor is crucial for its
safety and performance properties [26], hence motivating the current research.

Specifically, our focus is on the efficient prediction of the ensemble behavior of the pebbles,
under normal gravitational field.

3 Granular Flow Model

We assume that the granular material is composed of a set of rigid particles, whose relative
motion is constrained by rigid contacts with friction. Therefore, the behavior of the material
depends on a few simple parameters such as the geometric shapes of the particles and their
friction coefficients. In many cases (simulation of stiff particles such as sand or pebbles, for
instance) such a rigid-contact assumption represents a welcome simplification with respect
to the DEM approach, because we do not need to introduce complex constitutive laws or
penalty functions that model the contact, and because there is no unwanted compliance in
the contacts.

In the following we adopt the mathematical formulation that we presented in [16]. Assume
nb is the number of particles. For the j-th particle, rj is the absolute position of the center of
mass, and the unimodular quaternion ǫj ∈ S3 represents the rotation. The state of the gran-

ular material is represented by the large vector q =
[
rT
1 , ǫT

1 , . . . , rT
nb

, ǫT
nb

]T ∈ R
7nb along with

the time derivative q̇ =
[
ṙT
1 , ǫ̇T

1 , . . . , ṙT
nb

, ǫ̇T
nb

]T ∈ R
7nb . Optionally one can avoid using quater-

nion derivatives in q̇ because, remembering ǫ̇i = 1
2
GT (q)ω̄i with 3x4 matrix G(q) as defined

in [27], it is possible to introduce the generalized velocities v =
[
ṙT
1 , ω̄T

1 , . . . , ṙT
nb

, ω̄T
nb

]T ∈ R
6nb ,

with linear mapping q̇ = L(q)v.
We denote by fA (t,q,v) the set of applied forces, and we assume that mass matrices of

each particle remain constant.
We assume that the j-th particle is described by a convex shape Ωj ∈ R

3, so that for
each pair of particles j, k a nonpenetration condition Φj,k(qj, Ωj ,qk, Ωk) ≥ 0 can be defined.
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Although for simple shapes this condition corresponds to a scalar distance inequality between
the nearest points of the two surfaces, there are cases (as in contact between two flat faces
of polytopes) where multiple contact points could be considered, hence leading to multiple
contacts and multiple inequalities even for a single particle pair (see Section 6). Furthermore,
given positions q and shapes Ω =

⋃
j=1..nb

Ωj of all particles, one can find a set of nc contacts
(couples of contact points on two surfaces, aligned to the distance between the two surfaces),
each corresponding to a nonpenetration constraint Φi(q, Ω) ≥ 0.

By means of a proper collision-detection method, we introduce contact constraint only
for surfaces that are separated by a distance smaller than a threshold δ > 0, so that among
all nc potential contacts, a smaller set A of more relevant contact constraints can be selected:

A(q, Ω, δ) = {i | i ∈ {1, 2, . . . , nc} , Φi(q, Ω) ≤ δ} ,

with cardinality nA. From now on, with i ∈ A we will denote the i-th relevant contact.
We found that, in many scenarios involving dense granular flows, this approach leads to a

number of contact constraints nA that is only O(nb). For instance, with equal-sized spheres,
we had on average nA ∝ Cnb with C in the 4 ÷ 6 range.

Given the i-th contact, among two bodies A and B, let ni be the normal at the contact
point, directed toward the exterior of the A body. Let ui and wi be two vectors in the contact
plane such that ni,ui,wi ∈ R

3 are mutually orthogonal vectors. Also, the frictional contact
force is represented by multipliers γ̂i,n ≥ 0, γ̂i,u, and γ̂i,w, which lead to the normal component
of the force Fi,N = γ̂i,nni and the tangential component of the force Fi,T = γ̂i,uui + γ̂i,wwi.

For each contact in A that is active, that is, Φi(·) = 0 because bodies are touching, we
introduce the contact forces; inactive contacts, Φi(·) > 0, do not enforce any reaction force.
Hence the mathematical description of this unilateral model leads to a complementarity
problem [28]:

γ̂i,n ≥ 0 ⊥ Φi(·) ≥ 0. (1)

Moreover, the friction coefficient µi limits the ratio between the normal and the tangential
force, and the tangential force must have a direction that is opposite to the tangential speed
vi,T . This results in the following relationships:

µiγ̂i,n ≥
√

γ̂2
i,u + γ̂2

i,w , ||vi,T ||
(
µiγ̂i,n −

√
γ̂2

i,u + γ̂2
i,w

)
= 0,

〈Fi,T ,vi,T 〉 = − ||Fi,T || ||vi,T || .
(2)

We note that equations (1) and (2) are the first-order necessary Karush-Kuhn-Tucker
conditions [29] for a minimization problem:

(γ̂i,u, γ̂i,w) = argmin√
bγ2

i,u+bγ2
i,w≤µibγi,n

vT
i,T (γ̂i,uui + γ̂i,wwi) . (3)

Let us introduce Ai,p = [ni,ui,wi] as the R
3×3 matrix representing the alignment of the

ith contact, AA and AB as the rotation matrices Ai = A(ǫi) of the two bodies, and the
vectors s̄i,A and s̄i,B as the contact point positions in body-relative coordinates. Given a
triplet of multipliers γ̂i = {γ̂i,n, γ̂i,u, γ̂i,w}T , the contact exerts two forces on the center of
mass of the two bodies A and B,

Fi,A = −AT
i,pγ̂i, Fi,B = AT

i,pγ̂i, (4)
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and two torques, expressed in body-relative coordinates:

Ti,A = AT
i,pAA˜̄si,Aγ̂i, Ti,B = −AT

i,pAB˜̄si,B γ̂i, (5)

where we used the skew-symmetric matrices ˜̄s defined as

˜̄s =




0 −s̄z s̄y

s̄z 0 −s̄x

−s̄y s̄x 0



 .

This allows us to introduce the tangent space generators Di = [Di,n, Di,u, Di,w] ∈
R

6nb×3,defined as

DT
i =

[
0 . . . −AT

i,p AT
i,pAA˜̄si,A 0 . . . 0 AT

i,p −AT
i,pAB˜̄si,B . . . 0

]
, (6)

and to write the complete expression of the dynamical model. The time evolution of the
system is governed by the following differential problem with equilibrium constraints, which
is equivalent to a differential variational inequality (see [30]):

q̇ = L(q)v
Mv̇ = f (t,q,v) +

∑
i∈A(q,Ω,δ)

(γ̂i,n Di,n + γ̂i,u Di,u + γ̂i,w Di,w)

i ∈ A(q, Ω, δ) : γ̂i,n ≥ 0 ⊥ Φi(q) ≥ 0,
(γ̂i,u, γ̂i,w) = argmin

µibγi,n≥
√

(bγi,u)2+(bγi,w)2

vT (γ̂i,u Di,u + γ̂i,w Di,w) .

(7)

This DVI also includes the vector of forces f (t,q,v), in Lagrangian coordinates, caused by
gyroscopic effects and other applied forces such as gravity and aerodynamical drag.

Note that this model does not take into account elastic rebound effects. However, for the
type of application targeted — dense granular flow that appears, for example, in pebble-bed
nuclear reactor simulation — all collisions occurring during the simulation can be assumed
to be of the inelastic type.

There exist configurations for which this type of DVI might not have a solution [31, 32].
Nonetheless, as shown in [33], it is still possible to obtain weaker solutions in a vector-
measure differential-inclusion sense using time stepping schemes that do not solve in terms
of accelerations and forces, but rather use speed increments and impulses as unknowns.

4 Solving the DVI

Given a position q(l) and velocity v(l) at the time-step t(l), the numerical solution is found
at the new time-step t(l+1) = t(l) + h by solving the following optimization problem with
equilibrium constraints [34]:

M(v(l+1) − v(l)) = hf(t(l),q(l),v(l)) +
∑

i∈A(q(l),Ω,δ)

(γi,n Di,n + γi,u Di,u + γi,w Di,w) (8)

i ∈ A(q(l), Ω, δ) : 0 ≤ 1

h
Φi(q

(l)) + DT
i,nv

(l+1) ⊥ γi
n ≥ 0, and (9)

(γi,u, γi,w) = argmin
µiγi,n≥

√
γ2

i,u+γ2
i,w

vT (γi,u Di,u + γi,w Di,w) , (10)

q(l+1) = q(l) + hL(q(l))v(l+1). (11)
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Here, γs represents the constraint impulse of a contact constraint, that is, γs = hγ̂s, for
s = n, u, w. The 1

h
Φi(q

(l)) term achieves constraint stabilization; its effect is discussed in
[20]. The scheme converges to the solution of a measure differential inclusion [18] when the
step size h → 0.

We observe that such a stepping method, in the case of no contacts, behaves like a semi-
implicit Euler integrator, a first-order integration scheme that features the property of being
symplectic [35].

Unknown impulses and speeds in (8)-(10) can be found by solving a nonlinear comple-
mentarity problem (NCP), that represents the most complex part of the entire approach.
[36, 37].

Among the different approaches that can be used to solve (8)-(10), [12, 37], we use a fixed-
point iterative scheme that is completely matrixless and fits well in scenarios with thousands
of contacts and particles. The theoretical properties of the method (convergence, existence
of the solution) are detailed in [16]; in this paper we focus on its efficient implementation.

Using the approach proposed in [16], one solves the problem as a monotone optimization
by introducing a relaxation over the complementarity constraints: Eq. (9) is replaced with

i ∈ A(q(l), Ω, δ) : 0 ≤ 1

h
Φi(q

(l)) + DT
i,nv

(l+1) − µi

√
(vT Di,u)2 + (vT Di,w)2 ⊥ γi

n ≥ 0 . (12)

In [18] it was demonstrated that, for h → 0, the solution of the modified time-stepping scheme
will approach the solution of the same measure differential inclusion as the scheme, presented
in [36, 37], that uses unrelaxed constraints. For large time steps, the above relaxation
causes the objects in sliding contact to float apart by a quantity proportional to hµ||vT ||;
this artifact introduces an unnatural “dilation layer” around sliding objects, but it can be
tolerated in case of small friction and/or small tangential speed (that is often the case in
dense granular flows) and tends to zero thickness anyway, for h → 0. In addition, the
equation (12) is the key to being able to integrate with fixed time step and not have to stop
at collisions, at least for totally plastic flows [20]. This is best seen if we assume that µ(i) = 0
and Φ is linear. In this case, if two objects in proximity enter contact during a time step,
(12) ensures that exact contact occurs precisely at the end of the time step). Therefore all
collisions during a time step are now simultaneous, and there is no need to stop and restart
at each one of them. The convergence result in [18] ensures that this strategy is consistent
– converges to the correct limit behavior – in the limit of h → 0.

With the above assumptions, the problem is a special class of convex complementarity
called second-order cone complementarity problem.

The algorithm we proposed in [16] is an evolution of the method introduced by Man-
gasarian for LCPs [17], that is, a fixed-point map (a smoother like Gauss-Seidel or Jacobi)
interleaved by projections onto the feasible sets.

We introduce the following quantities:

k̃ ≡ Mv(l) + hf(t(l),q(l),v(l)) (13)

bi ≡
{

1

h
Φi(q

(l)), 0, 0

}T

i ∈ A(q(l), Ω, δ). (14)
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The method iterates over index r until convergence is reached:

∀i ∈ A(q(l), Ω, δ) :

δr+1
i = γr

i − ωηi



DT
i M−1




∑

z∈A(q(l),Ω,δ)

Dzγ
r
z + k̃



 + bi



 (15)

γr+1
i = λΠΥi

(
δr+1
i

)
+ (1 − λ)γr

i . (16)

The results of that iterative process are the contact multipliers γi (the dual variables); in a
following step one can also easily compute the unknown speeds v(l+1) (the primal variables)
using Eq. (8), as

v(l+1) = M−1
∑

z∈A(q(l),Ω,δ)

Dzγ
r+1
z + hM−1f(t(l),q(l),v(l)) + v(l). (17)

Note that, right after the computation of δr+1
i , the iterative process uses the projection

operator ΠΥi
(·), a nonexpansive map ΠΥi

: R
3 → R

3. If the multipliers fall into the friction
cone Υi, they are not modified; if they are in the polar cone Υo

i , they are set to zero; in
the remaining cases they are projected orthogonally onto the surface of the friction cone.
For more details on ΠΥi

(·) and convergence, see [16]. The overrelaxation factor ω and the
parameters λ and ηi are adjusted to control the convergence [16].

5 Implementation of the Complementarity Solver

The iteration (15)-(16) can be implemented in different flavors; in this section we discuss the
most relevant.

5.1 Projected Jacobi

We aim at avoiding the summation in the right-hand side of Eq. (15). Using Eqs. (8) and (13),
we can rewrite the iteration in a more compact form:

∀i ∈ A(q(l), Ω, δ) : γr+1
i = λΠΥi

[
γr

i − ωηi

(
DT

i v(l+1),r + bi

)]
+ (1 − λ)γr

i (18)

In this case, for each iteration, before repeating (18), also primal variables (the velocities
v(l+1)) are updated as

v(l+1),r+1 = M−1
∑

z∈A(q(l),Ω,δ)

Dzγ
r+1
z + hM−1f(t(l),q(l),v(l)) + v(l). (19)

Note that Eq. (19) can be implemented in an incremental form for even better perfor-
mance, because at each r-th iteration the correction hM−1f(t(l),q(l),v(l)) + v(l) does not
change: it is enough to start the process with v(l+1),0 = hM−1f(t(l),q(l),v(l)) + v(l) and add
M−1

∑
z∈A Dz∆γr+1

z at each iteration.
Note that, except for the projection, this method has the same properties of a Jacobi

method with overrelaxation. As for the ω and η parameters we found that good default
values are ηi = 3/Trace(DT

i M−1Di) and ω = 0.2.
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5.2 Projected Gauss-Seidel

If we perform Eq. (19) right after Eq. (18) instead of waiting for all the impulses to be
computed in an iteration, we obtain a scheme that is similar to a successive overrelaxation
method or a Gauss-Seidel, because it exploits the immediate update of multiplier in the
computation of the following multipliers.

This method can be summarized as follows. First the primal variables are initialized as

v(l+1),0 = hM−1f(t(l),q(l),v(l)) + v(l). (20)

Then one must iterate the following formulas over r until convergence:

∀i ∈ A(q(l), Ω, δ)






γr+1
i = λΠΥi

[
γr

i − ωηi

(
DT

i v(l+1),r + bi

)]
+ (1 − λ)γr

i

∆γr+1
z = γr+1

z − γr
z

v(l+1),r+1 + = M−1
∑

z∈A(q(l),Ω,δ) Dz∆γr+1
z .

(21)

Convergence can be monitored looking at the residual terms DT
i v(l+1),r +bi: the iteration is

stopped when they fall below a tolerance threshold.
The convergence properties are better than the previous projected Jacobi, especially

in case of redundant contacts. Moreover, larger values for ω can be used without risking
divergence. For instance we successfully tested values up to ω = 1. This method behaves
better than the projected Jacobi especially in case of redundant constraints, as occur in the
case of many contact points between two flat surfaces.

5.3 Multithreaded Parallel Solver

A multithreaded version of the solver can leverage modern multicore processors. In our
implementation, given nµ cores, the solver partitions the set of constraints A(q(l), Ω, δ) into
nth subsets As(q

(l), Ω, δ), with nth ≥ nµ; A(q(l), Ω, δ) =
⋃

s=1..nth
As(q

(l), Ω, δ).
As in block-Gauss-Seidel solvers, after initialization of primal variables with (20), each

As(q
(l), Ω, δ) subset is assigned to a thread, each running the iteration (21) where A(q(l), Ω, δ)

has been replaced by As(q
(l), Ω, δ). Then the threads are synchronized for completion, and

the iteration (21) is started again. This process continues until convergence.
We also developed a hyperthreaded version of the projected Jacobi scheme that assigns

one contact per thread on massively parallel architectures of CUDA type [38]. With such an
implementation we obtained a speed improvement of more than one order of magnitude on
a NVIDIA 9800GX2 GPU board.

6 Collision Detection

Since granular flows usually involve thousands, if not millions, of particles, it is not practical
to search for contact points for all the particle pairs because we would obtain a method with
superlinear complexity O(n2

b) both in algorithmic time and in memory space.
Hence a preliminary stage, called broad-phase collision detection, is used to detect pairs

of particles whose bounding boxes are near enough. We explored two approaches to this
problem: the highly-optimized SAP (sweep and prune) algorithm available in the Bullet
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open-source library [39], and a GPU hyperthreaded implementation that partitions the space
into a 3D grid of particle bins and creates collision pairs for the particles in a single bin. For
a large amount of particles with the same size, densely packed in a limited volume as in our
tests, the second approach showed superior performance.

After the broad-phase stage there is the narrow-phase process, where we create the con-
tacts —if any— for each pair of particles that resulted near enough. For convex geometries,
such as spheres, ellipsoids, and polytopes, we use the Gilbert-Johnson-Keerthi (GJK) al-
gorithm [40]; concave shapes, on the other hand, are rather decomposed into clusters of
concave polytopes. The GJK algorithm easily obtains the two points with minimum dis-
tance between two convex shapes, so it can be used to create contact points when shapes
are not already in contact. However it cannot deal with interpenetrations; we solve this
problem by performing GJK on shapes that are smaller than the original ones, removing a
layer with δin thickness. After the nearest contact points have been obtained, they are offset
by amounts δin toward the exterior. This efficient workaround allows interpenetrations up
to 2δin between the shapes, although it has the side effect that sharp corners of polyhedrons
are smoothed, as they have fillets of radius δin (the collision shape is the Minkowski sum of
a smaller shape and a ball with r = δin). This side effect is not an issue when working with
spherical particles, since the Minkowski sum of two spheres is still a sphere.

Penetrations larger than 2δin —which should be rare— can be handled by falling back
to an EPA (expanding polytope) algorithm. Note that, in the case of a sphere, choosing δin

as the radius of the sphere means that EPA is not even needed.
The case of the collisions between the particles and the interior of the PBR reactor vessel

is handled by a custom algorithm. This is needed because the inner wall of the vessel is
made with a hollow cylinder and a funnel, both concave shapes that we do not approximate
with convex decomposition because the resulting cluster of polyhedra would introduce small
artifacts (the curved surface would be approximated by faceted shapes).

Contacts whose distance is larger than δ do not enter the set A(q(l), Ω, δ). Choosing
the proper δ and δin parameters is not trivial, because too large a δ means that too many
unneeded potential contacts will enter into the complementary solver, thus slowing its per-
formance, while too low a δ with fast-moving particles could result in some contacts being
created when it is too late and there’s already a small interpenetration. Similarly, a large δin

should be avoided in the case of sharp shapes because of the abovementioned “smoothing”
effect, while too small δin means that even the least interpenetration may break the GJK
algorithm and require the less robust EPA fallback. In the tests discussed here, using only
spheres of radius rb, we found a good trade off with δ = 0.2rb and δin = rb.

We remark that the above mentioned software implementation allows simulations of
granular materials with particles of arbitrary shapes, such as fragments of rocks. However
problems involving spherical bodies pose less difficulties than in the case of complex shapes:
particles with irregular surfaces may lead to multiple contact points and concave shapes
can lead to locking phenomena or ill-posed contact constraints that negatively affect the
performance of the complementarity solver.
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7 Experimental Setup

We built two test beds for validating our simulation method; see Fig.(2). Both are filled
with plastic spheres with diameter 6 mm ±0.05; the density of the plastic is 1060 kg/m3.

The first test bed is a flat hopper, with 30 mm thickness and 440 mm width. The bottom
funnel can be adjusted either in terms of slope and width of the outlet. The front wall is
made with transparent plexiglas. It contains a maximum of 50,000 spheres.

The second test bed is a half small-scale reproduction of the PBR reactor. The diameter
of the cylinder is 348 mm; the slope of the conical funnel can be selected between 30◦ and
60◦. The outlet diameter is 60 mm. All the walls are transparent. The test bed contains a
maximum of 200’000 spheres (we note that a similar small-scale PBR has been presented in
[22], obtaining similar results).

In both cases the spheres can be followed from the outside by using a high resolution
camera, shooting at fixed time intervals, see Fig.(3). Digital postprocessing of pictures using
the MatlabTM Image Processing Toolbox allows us to obtain mean trajectories and profiles
of mean speeds at different heights. All spheres are initially yellow, but to ease the image
processing, we dip half amount of the spheres into a special ink, so that the spheres can be
layered into the test beds as bands of different colors. After each test all the spheres are
washed with alcohol and are ready for another test.

In controlled air conditions, sphere-wall friction is µ = 0.43 and friction between the
spheres is µ = 0.46. Air conditioning is important because we experienced that temperature,
humidity and static electricity can affect these values.

8 Results

Both the flat hopper with 50,000 spheres and the half reactor with 165,000 spheres 1 have
been simulated by using the convex cone complementarity approach, implemented in our
C++ software Chrono::Engine. Two types of reactor models have been simulated: the
small-scale reactor, and a full-scale reactor. In the small-scale case we take into account
the friction between the spheres and the flat wall because it is meant as a comparison with
experimental data, where friction against the plexiglas window cannot be avoided. Instead,
the full-scale is used for comparison with a half-reactor DEM model: in this case there is no
friction on the vertical plane that splits the vessel, because it aims at reproducing the entire
reactor without artifacts caused by the vertical wall.

After each simulation we obtained many gigabytes of data, with the position of the
spheres and the application point, alignment, and strength of the contact forces saved at
each time step. We rendered the results of the simulations using a custom script for the
POV raytracing software, as shown in Fig.(4,5), to make pictures and animations.

In Fig.(6) one can appreciate the matching between a filmed experiment and the corre-
sponding simulated flow. We noticed that the initial filling process can lead to different initial

1The simulation is limited by RAM constraints on 32 bit systems. In fact, we simulated also a reactor
with 400’000 spheres, using a GPU-based parallel version of the solver on a 64 bit system, but results are
not discussed here.
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conditions. For instance Fig.(6) shows that the simulated material starts with less crystal-
lization (i.e. arrangement in layered regular patterns), because initial packing was created
from almost a random position followed by an iterative adjustment, while the experimental
hopper was slowly filled by pouring spheres from above.2

We also developed various MatlabTM postprocessing programs to load the many output
files and produce statistical results. As demonstrated in [7], the granular flow of pebbles
results in the same statistics if the pebbles are continuously extracted, as opposed to a slow
schedule, for instance, two spheres per minute in a real PBR reactor.

One of the most interesting results is the mean speed of the granular flow. Given a couple
of position files, separated by a time interval, the speed of each sphere can be computed;
the space is then divided in rectangular bins, and all the spheres that fall within a certain
bin will contribute to the average speed of that bin. For the flat hopper we use a 2D grid
of 18x20 bins (x,y), while for the PBR reactor we use a 3D Cartesian grid of 28x15x15 bins
(x,y,z) or a polar grid of 14x15 (r,y) circumferential bins to plot data for a vertical slice of
the reactor, averaged along the circumference.

Although many spheres contribute to the average of a single bin, we improved the smooth-
ing of the plotted data by averaging the data of those grids over few seconds of simulated
time, thus repeating the process for multiple couples of position states. This produced the
results of Fig.(7, 8 and 9). For the PBR flow, these plots match the results reported in [22, 7];
in particular one can note the typical transition to a plug-like motion in the upper part of
the vessel [41], with almost no radial dispersion except near the outlet (Figure 10). Also
contacts can be plotted, either averaged in bins (and matching other results from [42]) or
drawn with contact nets as in Fig.(11). One should note that, in addition to this qualitative
agreement, Fig.(7) shows that our simulation approach matches the experimental values of
the velocity statistics within 5% – no small accomplishment if one considers that friction
coefficients can easily vary by up to 10% due to humidity and other environmental factors.

Other interesting results are the volume fraction vm (material volume per unit of volume)
and the porosity, φm = 1 − vm. The value of porosity has been compared to results coming
from a DEM simulation of the PBR reactor [7], obtaining good agreement: no more than
5 % discrepancy in all areas except at the wall, where it is 10 %; see Fig.(12).

For the PBR reactor we used 240 iterations per time step, whereas 150 iterations per time
step were enough in the hopper simulation to guarantee good precision, with a time step of
0.0025 s. The plot of Fig.(13) shows acceptable constraint violation as an intuitive meaning
of the precision of the solver. We note that particles that are at the bottom of the silo
may experience larger interpenetration errors; hence the convergence of the solver is more
critical with high stacks. This suggests that future improvements could exploit multigrid
approaches to alleviate this problem and require fewer iterations. We also note that larger
time steps, up to 0.01 s, fewer iterations, and consequent lower precision may still result
in stable simulations, where the overall motion of the granular material is still meaningful,
although low precision tends to “smooth” speed profiles, to miss part of the crystallization
effects, and to distort volume fraction.

Here, our main objective is the validation of the predictive power of our DVI-based

2From repeated tests we noticed that the height of the stacks can differ up to 10% if the simulated and
experimental filling process are quite different.
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approach. Given our ultimate objective of developing DVI approaches that are both accurate
and much faster than DEM, however, we briefly discuss the current computational effort
situation. For the PBR simulations with 165,000 spheres, each 2.5 millisecond time step
required about 2 minutes of CPU time on a 2GHz Pentium computer, whereas the hopper
simulation required 30 seconds per step; we remark that these time steps are larger than
those required by DEM methods by a factor of more than 300. Assuming that DEM effort
behaves linearly with the problem, the 780 CPU hours needed for 7.8 s of simulation of
440’000 spheres as in [7], suggests that DEM would need 5.6 minutes on a 3GHz Intel Xeon
for a 2.5 millisecond simulation, several times larger than our method.

We note, moreover, that the computational performance potential of our method is much
larger. Indeed, our calculation remains stable even if the time step is increased by a factor of
10 and the number of iterations is decreased by a factor of 3, at the cost of some degradation
of the accuracy. In addition, we point out that the DEM parameters in [7] were larger than
the one recommended by Hertzian contact theory by factors that resulted in time steps that
were more than 300 times larger. For the PBR experiments, DEM still accurately predicted
the macroscopic behavior; but that result is far from guaranteed if the configuration is
changed (say, by increasing the load on the pebbles).

We conclude that, for the configurations studied, the CCP method is at least as fast
or faster than DEM, and that it produces simulations whose statistics match well physical
experiments. To be sure, CCP is more complex to implement than DEM. In addition, certain
physical features, such as restitution, while implementable in our approach [36], need more
work for validation-quality simulation compared to DEM.

Finally, more research is under way to accelerate the resolution of CCP problems, the
linchpin of CCP being able to outperform DEM. Given the many options in fine tuning of
our algorithm, some experimentation is needed before we determine the optimal accuracy–
performance trade-off. But the main reasons why these options are available to us is the
stability of the method for a broad range of the parameter choices, which is due to the
absence of the artificial stiffness, an option not available to DEM. In future work we plan to
carry out comprehensive performance profiling tests for both our method and DEM.

9 Conclusions

We adopted a numerical method based on convex complementarity problems as an efficient
alternative to DEM methods for the simulation of granular dynamics. Two test beds have
been built for validation; one of them represents a small scale version of a PBR nuclear
reactor, that is the application that motivates our research efforts.

The agreement between the numerical and the experimental results demonstrate that
the CCP approach is a reliable method for simulating large granular flows, suggesting its
adoption also in fields such as rock-soil dynamics, pharmaceutical engineering, and powder
mechanics as a faster alternative to the DEM approach even in case of hundreds of thousands
of particles.

Future efforts will address the improvement of the convergence properties of the method
by endorsing multigrid approaches and domain decomposition on parallel architectures.
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Figures

Note: all pictures are available in EPS format. In this PDF we resized all the pictures as
they shoud appear in an ASME paper: their width is half page width (one column of text in
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Figure 1: Schematic representation of the pebble bed reactor
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Figure 2: The experimental testbeds: the half reactor and the flat hopper

 

Figure 3: Snapshot from one of the experiments of flow through the PBR half reactor model,
with the 60o funnel case

Alessandro Tasora CND-09-1036 18



 
 
 

Figure 4: Simulation of the 2D hopper model

 
 
 Figure 5: Simulation of the granular flow in the PBR nuclear reactor (half-reactor model,

165,000 pebbles)
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Figure 6: Comparison between experimental flow (half left of figures) and simulated flow
(half right of figures) in the hopper, at time t=0 s, t=0.6 s, t=1.2 s
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Figure 7: Comparison between numerical and experimental speed profiles in the flat hopper,
at t=1 s
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Figure 8: Speed profiles at different heights in the PBR reactor vessel
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Figure 9: Reactor flow speed
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Figure 10: Vertical speeds near the outlet of the reactor
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Figure 11: Contacts near the orifice of the 2D hopper, during steady flow
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Figure 12: Porosity in the reactor: comparison with the DEM method
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 Figure 13: Maximum violations in contact constraints at different heights in the hopper, for
different time steps
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